
Closed-vortex-type solitons with Hopf index

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 269

(http://iopscience.iop.org/0305-4470/15/1/035)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 269-275. Printed in Great Britain 

Closed-vortex-type solitons with Hopi index 
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Theoretical Physics Department, Patrice Lumumba University, Moscow V-302, GSP 
117923, USSR 

Received 26 March 1981, in final form 24 June 1981 

Abstract. The structure of three-dimensional solitons with non-trivial Hopf index is 
investigated for the Sz nonlinear a-model. It is shown that the corresponding regular 
solutions are of closed-vortex type. We prove the existence of regular vortex-like solutions 
which are used for the approximation of solitons with large values of Hopf index. 

1. Introduction 

It has been shown (Rybakov 1979) that three-dimensional scalar charged localised 
solutions to nonlinear field equations (stationary solitons) may only be conditionally 
stable, that is stable under the condition of charge fixation. But for solitons carrying 
topological charges, this condition holds automatically. Hence, topological solitons are 
the most promising candidates for the role of stable extended particles. 

The least number of independent field variables required to introduce a non-trivial 
topological charge in (3 + 1)-dimensional space-time is equal to two. The correspond- 
ing topological charge Q is the Hopf index of the mapping S3 -* S2. In this case the field 
N,, a = 1,2,3,  takes values in a two-sphere, i.e. N,(t, x) : R x R 3  + S2 and N: = 1. We 
suppose the natural boundary condition 

Na(6 0 0 ) = S n 3 *  (1) 

In the present paper we study a generalisation of the Faddeev model (Vakulenko 
and Kapitanski 1979, Vladimirov 1980) which is the simplest model with Hopf index. 
The construction of the Faddeev model from an N, field is based on the following ideas. 
To obtain finite-energy soliton solutions in a three-dimensional space one should 
include in the Lagrangian terms containing space derivatives in more than second 
power to overcome the obstacles of Derrick’s theorem (Derrick 1964). The time 
derivatives, on the other hand, should enter the model only in quadratic form. 

A more detailed study of this model will be made in 0 3. 

2. Structure of the Hopf index 

If we introduce the vector A, by 

F,” = a,A, -a,& = 2 ~ ~ ~ ~ a , N ~ a , . N & ,  

then the degree of knottedness of the vector-field lines B =curl A will be the Hopf 
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index Q which may be given by (Nicole 1978, de Vega 1978) 

Q =  IT)-' A * B d3x = J o  d3x I 13) 

where the identically conserved topological current is 

J'" = - ( 128 IT*)-' E ""crrF,,A,. 

We investigate the case of the N-field invariant under the group 

G = diag[0(2)r 0 0 ( 2 ) s l ,  (4 )  

0 ( 2 ) 1  and O(2)s being the groups of rotations around the axes N3 and z respectively. It 
is immediately apparent that the G-invariant N-field should satisfy the condition 

(T3)sNS + [(T3)rNln = 0 IS1 

where (7'3)s and (T3)r are the generators of the groups 0 ( 2 ) s  and 0 ( 2 ) 1 ,  respectively. If 
we now expand the invariance group, the field N, must also satisfy the additional 
equation 

[(T3)rNla + d(T,)sN,  = 0, d =constant # 0, j # 3, 

where (T)s are the generators of 0 ( 3 ) s .  Then from (5) one obtains 

[ ( T 3 ) s - d ( ~ ) s 1 N a  = 0 

which shows that the vector V N ,  has poloidal structure. Therefore, since the vector 
field B may be expressed as B = (2 /N3)[VN1 x VN2] ,  it is clear that the corresponding 
B-lines will be circles with their centres lying on a certain straight line. Consequently, 
the degree of knottedness of the B-lines or Q is trivial. Thus, we have established that 
any attempt at expanding the invariance group (4) gives only trivial values of Q for 
invariant fields. Hence, the group (4) is the maximal compact group, invariant fields of 
which satisfy the condition Q # 0. In this case the Hopf index may be calculated 
explicitly. 

As it is seen from ( 5 ) ,  the G-invariant field in spherical coordinates ( r ,  6, a )  should 
be of the form 

N3 =cos p = w(r,  a), y = tan-'(Nz/N1) = m a  + v (r, 61, ( 6 )  

with w and v being arbitrary functions of r, 8 and (p, y )  polar angles of the N,-field. 
From (3), using the Biot-Savart law, we find that 

m E Z, 

Q = - 2 ( 8 1 ~ ) - ~  11 d3x d3x'[B' (R x B ) ] / R 3  ( 7 )  

where 

R = x - x ' ,  R = IRI, B = - ~ ( V W  X Vy), B' = B(x') .  

The ansatz (6) gives 

B = - ( 2 m / r 2  sin 6) (e ,wS  -egrw,) - 2e ,K/r  (8) 

where K = w,vs - wsv,. From the structure of (8) and finiteness of B it follows that 
V w  = 0 on the z axis. Hence we find w + 1 for r sin 6 + 0, which shows that the surface 
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w = constant is homeomorphic to tore TZ. Inserting ( 8 )  in (7) ,  through some mathema- 
tical manipulations we finally arrive at the expression 

W T r  

Q = ~ J  d r J  d 6 ( 1 - w ) ( w , v e - w e v r ) .  ( 9 )  
0 0 

In cylindrical coordinates (p, z ,  a) for w(p, z )  = w(p,  -2) and Q # 0 we have 
u(p, z) = -U@, -2). It is clear from (6) that U is not a single-valued function and since 
u E [ - ~ n / 2 ,  m / 2 ] ,  n E H, it may have jumps [ U ]  = E ~ T ,  E = * l .  Let us denote by 
C ( p ,  z )  the jump-line of the function v(p ,  z). Now, noticing that 2(w - l)(w,uz - w,up) 
is the a component of the vector curl [ u V ( l -  w ) ~ ]  and applying Stokes’ theorem to ( 9 )  
relative to the contour r + U r -  (figure l ) ,  we conclude that due to the boundary 

Figure 1. r+ are closed contours of integration for calculating the Hopf index using (9). C, 
are parts of the contours adjoining the jump-line C(p,  2 ) .  The broken line C, is the arc of a 
circle of infinite radius. 

conditions on w(p,  z) only the paths C- and C+ adjoining the jump-line C(p ,  z) (see 
figure 1) contribute to the integral. Hence, taking the above facts into account, one 
obtains 

u(dl - V ) ( l -  w ) ~  / (dl a V ) ( l -  w)’. (10)  
m 

4T C(p,rz=O) 

Note that due to the single-valuedness of the N-field the endpoint C ( p o ,  0), where U = 0, 
*7rn/2, corresponds to the north or south pole of S2. Since the first possibility implies 
Q = 0, it follows that w = -1  at C(po,  0) .  Hence, supposing the uniqueness of the 
endpoint C(po,  0), we obtain finally 

( 1 1 )  
Thus, identification of the jump-line of U helps one to calculate the Hopf index easily 
from (10)  or ( 1 1 ) .  

Q = Enm = *nm. 

3. S2 nonlinear a-model 

As is well known (Vladimirov 1980), under the condition N z  = 1 only two independent 
PoincarC and 0 ( 3 ) r  invariants, (a,N,)’ and FE,,, can be constructed. The Lagrangian 
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density of the model may therefore be given by 

T= -( E’/~)F:~ +h2(d ,N, )2-M2(1  - W )  i 121 

where E, A, M are constant parameters and FFv is defined by (2). The massive term in 
the generalised Faddeev model (12) that guarantees the exponential vanishing of the 
field solution at space infinities breaks the symmetry O(3)l to 0 ( 2 ) ,  which is however 
already broken by the boundary condition (l)?. 

Vakulenko and Kapitanski (1979) have shown that the Hamiltonian H of model 
(12) allows an estimate from below through the Hopf index Q in the form 

H >  ColQ13/4 (13) 

but the authors did not provide the value of Co. Taking into account the minimum value 
of the constant C in the Sobolev inequality ~ ~ C $ 3 ~ ~ ~ C ~ ~ V C $ ~ [ 3  (Rosen 19711, it can be 
shown that 

CO = E A  (41~)’&3~/~ .  

Using the ansatz (6) for m = 1, the static Hamiltonian reduces to 

(14) 

For investigating the structure of fields minimising the functional (14), we recall that the 
surface P = constant is homeomorphic to TZ. Note that for small values of Q = 1,2,  . . . 
the field solution is complicated, but when Q = n >> 1, since the torus is converted into a 
closed vortex of small curvature (as will be shown later), the field structure is much 
simplified in this case. Hence we investigate first the infinite vortex (Enz 1977) for 
which 

P = P(PL v = kz,  k =constant. 

Denot ingph/Eh= s, 2k2~’ /h2  = c’ and 2M2s2/A4 = v, we find that the energy of 
the vortex of length 1 is 

H = 2vlA21[P] 115) 

where 

The existence of vortex solutions may be proved by a variational method, if we 

P ( 0 )  = v, P(00) = 0. I 17) 

Using (17) and inequalitites like (p’)2s2+sin2 /3 22slP’sin PI,  after simple cal- 

assume boundary conditions 

culations one obtains the estimate 

I [ P ]  2 ( v’c’ + 16)”’ + ( v 2 c 2  + 128 ~ / 9 ) ’ ’ ~  

which guarantees the existence of a minimising sequence {p,, (s)} for the functional (16). 
t Some additional investigations show that the proposed massive term is the simplest one, for which the 
Hamiltonian estimate from below through Q exists even when gauge vector fields are included (Kundu 1981 ). 
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On the other hand, from the finiteness of the integral j r (ds/s)yr  s 2 C :  <a where 
y, = cos P,, and Schwartz's inequality, we have 

From (18) for s s S << 1 one obtains 

l?T-P,(S)ls CzS'/'. 

Similarly as in (18), using J:(pA)'s ds s C: <a, for s a 6 we obtain 

IP,(S) - P n ( S ) I  s C3[lg(s/S)11/'. (20) 

From (19) and (20) it follows that P, E H i ,  where Hi is a Hilbert space with norm 
m 1/2 

llPnII = (1 ( P 9 ' s  ds +&(a))  , a E (0,oo). 
0 

Therefore, the sequence {P,} tends weakly to some limit function P (s) E H i .  Now, 
to show that the functional I[p] attains its lower bound, we express I,, = I[@,,] as the 
sum of positive scalar products of the elements from L2(0, CO): 

where 

g'"'= (PL)'(l + s 2 ) ,  
dip:"' =sin P,(I + C ~ S ~ ) ~ / ' ,  

h ('' = [s' + sin' P, (1 + c's')]/(s + s3). 
p:"' = (2vs)"' sin(~,/2). 

We are now in a position to use the method developed by Kundu et a1 (1979) to 
prove that the lower bound of the functional (16) is reachable and also the regularity of 
the function P ( s )  having the asymptotes 

for s K 1, 
for s >> 1, P ( ;sI"exp[-s (cz + v/2)1/21 

a, b being positive constants. The Euler-Lagrange equation obtained from (16) has 
also been solved numerically for v = 1 and c E (0,5). One such solution is represented 
graphically in figure 2. 

0 1 .o 2 .o 3.0 4.0 5.0 
S 

Figure 2. Dependence of ,9 on s. The solution is obtained for f3'(0)=-2.4894 and 
~=~0=1.908. 
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The vortex solution thus obtained may now be used for an approximation of the 
soliton solution with large value of Hopf index Q = n >> 1. With this aim we identify the 
endpoints of the vortex of length 1 to obtain a closed vortex. Note that the vector lines 
of the B-field are helixes with pitch 277/k. Hence, for the closed vortex the degree of 
knottedness of the B-lines or the Hopf index is Q = kl/277 = n, from which I = 2 m / k  = 
~ 2 ~ ' ~ e n / A c .  This geometrical consideration may also be checked directly by substitut- 
ing w = w(p), v = kz ,  z E [-1/2,1/2] and m = 1 in (9) rewritten in cylindrical coor- 
dinates: 

I 
I 

- 
4 

CO 

a, ="I dp ( l - w ) w ,  
477 0 

= kl/21r (21 1 

where we have used boundary conditions (17) for w = cos @. It is clear from (21) that for 
fixed values of k = c A / e h  the Hopf index Q - 1. Since our approximation is valid for 
large values of 1, we conclude that the closed-vortex solution found by us should have 
large Hopf index. Now to find the value of c we minimise the energy of the closed 
vortex given by 

H ( c )  = .5An47r2&I(c, v ) / c .  

Numerical calculations show that the function I ( c ,  l ) /c  attains its minimum value 
(see figure 3) at c = co= 1.908, where it equals 10.646, which agrees well with the 
estimate (13) even for Q = 1.  

C 

Figure 3. Dependence of the closed-vortex energy on the parameter c 

4. Conclusion 

Thus we have investigated the structure of the Hopf index for N-fields in Sz, invariant 
under the group diag[0(2)1 00(2)s ] ,  and have established that the soliton solutions 
with non-trivial Hopf index have the closed-vortex-like structure. We have shown the 
existence of regular vortex-type solutions in the S2 nonlinear cr-model and used them 
for the approximation of soliton solutions with large values of Hopf index. It has also 
been demonstrated that such a representation agrees well with the known energy 
estimate for the given model. 
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